MC codes and Range Monitoring in Particle Therapy: the case of secondary charged particles

Silvia Muraro on behalf of RDH & INSIDE collaborations

Particle therapy & MC codes: monitoring with secondary charged particles

INSIDE - Dose Profiler - data acquisition - FLUKA full simulation

Real time procedure

- Proton emission point determination:
- Attenuation of the secondary charged particles emission profile (re-weighting procedure)

Particle therapy & MC codes: monitoring with secondary charged particles

INSIDE - Dose Profiler - data acquisition - FLUKA full simulation

Real time procedure

- Proton emission point determination:
- Attenuation of the secondary charged particles emission profile (re-weighting procedure)

Particle therapy & MC codes: monitoring

Particle therapy **planning** gets fundamental information from MC codes. Its millimetric precision needs the assurance of the **successfulness of the treatment session**. Range monitoring of primary beam would be important for many reasons: patient mis-positioning, organ motion, anatomical density variation, uncertainties in CT/Hounsfield number conversion...

Different range monitoring techniques are under development exploiting secondary particles which are generated in the patient during the treatment: prompt gammas, annihilation gammas from β^+ induced activity, charged fragments. The yield of produced particles and their propagation in the human γ tissue must be studied with MC codes.

Monitoring with secondary charged particles

PRO

- The detection efficiency is almost 100%
- Can be easily back-tracked to the emission point -> can be correlated to the beam profile & BP
- They are forward peaked
- Enough energy to escape from patient

CONS

- **Attenuation** of the signal due to energy loss in the patient
- Multiple Scattering inside the patient -> worsen the back-pointing resolution

→ MC study is essential ⁵

Particle therapy & MC codes: monitoring with secondary charged particles

INSIDE - Dose Profiler - data acquisition - FLUKA full simulation

Real time procedure

- Proton emission point determination:
- Attenuation of the secondary charged particles emission profile (re-weighting procedure)

The Dose Profiler (DP)

A detector named Dose Profiler (DP), able to track secondary charged fragments (mainly protons) emitted at large angles with respect to the beam direction, is under construction and test.

Tracker: 6 planes of 2 orthogonally oriented layers of **scintillating fibers**. SiPMs Read Out (1 mm²).

Energy measurement: 2 planes of 2 orthogonally oriented layers of segmented thicker **plastic scintillators** (6 mm)

Data taking campaign

The detector tested @ <u>Trento Proton Center</u> Proton beam of E = 40-220 MeV Beam size @ isocenter: 3-7 mm. STS1, STS2 plastic scintillators (1 cm) for external trigger

Detector resolution: $\sigma_{DP} = \sqrt{\sigma_{Meas}^2 - \sigma_{Prod}^2}$

Test performed @ <u>CNAO</u>: both PET and DP systems have acquired data. ¹²C beam of energies: 115, 151, 221, 352 MeV/u <u>Thin target (charged fragments cross</u> section @ 60°-90°) PMMA, graphite, scintillator (polyethylene) \rightarrow MC cross section model improvement <u>Thick PMMA target</u> <u>RANDO</u> phantom \rightarrow MC feasibility study

Feasibility study with MC FLUKA

50

40 30

-10

-20 -30 -41 -50

Co

cm

A very preliminary simulation of a ¹²C beam on RANDO + DP CT of RANDO

Medical Applications

Particle therapy & MC codes: monitoring with secondary charged particles

INSIDE - Dose Profiler - data acquisition - FLUKA full simulation

Real time procedure

- Proton emission point determination:
- Attenuation of the secondary charged particles emission profile (re-weighting procedure)

DP real time hardware/software procedure

Reconstruction of the emission

point: <u>primary beam</u> and <u>track</u> <u>reconstructed directions</u> are necessary.

The DP tracks the emitted particle. The primary beam direction and position from the Rasterplan (interface with the Dose Delivery). An hardware interface is under construction.

A new <u>track reconstruction</u> performed by means of a <u>Kalman filter algorithm</u> is under study and optimization (GenFit code).

DP real time hardware/software procedure

For a correct interpretation of the signal, it is necessary to <u>evaluate</u> and <u>compensate</u> the amount of material <u>crossed</u> by each proton track inside the patient.

Patient CT is managed by a fast interaction/tracking code (on GPU).

The **attenuation** of the secondary charged particles emission profile due to the crossed material is <u>studied and parametrized</u> <u>with the FLUKA MC code</u>.

Traini et al., *Design of a new tracking device for on-line beam range monitor in carbon therapy,* Physica Medica 34 (2017) 18-27

Re-weighting procedure

By means of the **attenuation study** of the proton emission shape for different material thicknesses, we get a **method to** <u>correlate</u> the shape detected by the profiler coming out from the patient with the Bragg Peak position.

We apply to each reconstructed track a <u>weight</u> which takes into account the <u>thickness</u> and <u>density</u> of the material crossed by the proton.

Particle therapy & MC codes: monitoring with secondary charged particles

INSIDE - Dose Profiler - data acquisition - FLUKA full simulation

Real time procedure

- Proton emission point determination:
- Attenuation of the secondary charged particles emission profile (re-weighting procedure)

The on-line operation

The on-line operation of DP requires real-time back-tracing and reconstruction of the amount of material crossed in the patient by each detected proton.

This task will be accomplished using FRED (Fast paRticle thErapy Dose evaluator), a fast GPU-MC code developed to recalculate and optimize ion beam treatment plans within minutes.

		Primary/s	µs/primary	A. Schiavi et al.,
FLUKA	1 CPU	0.75 K	1340	Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy, Phys. Med. Biol. 62 (2017) 7482-7504
FRED	1 CPU	15 K	68	
FRED	1 GPU*	800 K	1.35	

* LAPTOP: Apple MacBook Pro with one AMD Radeon R9 M370X

See A. Schiavi talk: Fred: A new GPU-based fast-MC code and its applications in proton beam therapy previous session (Parallel MC implementations)

15-18 October 2017

International Conference on Monte Carlo Techniques for Medical Applications

The on-line operation

Conclusions

MC codes contribute on Range Monitoring in Particle Therapy by means of secondary charged particles in many points of the procedure:

Feasibility study

The <u>yield</u> of produced particles and their <u>propagation</u> in the human tissue must be studied with MC codes, as well as the estimation of the <u>flux magnitude</u> in the detectors (FLUKA)

Signal interpretation

<u>Back-tracking</u> has to be performed with MC codes to take into account the <u>attenuation</u> in matter and the <u>Multiple Scattering</u> which the charged particle undergoes passing through the patient (GenFit). The <u>attenuation</u> of the secondary charged particles emission profile due to the crossed material has been <u>studied and parametrized</u> with MC codes (FLUKA)

Fast process for real time operation

A fast MC code (FRED on GPU) has to be used to manage the previous <u>on-line operation during the treatment</u>

Thank you

G. Battistoni, E. De Lucia, C. Mancini-Terracciano, M. Marafini, I. Mattei, R. Mirabelli, <u>S. Muraro</u>, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena and V. Patera

